EPREUVE DE MATHS 1 (SM)

UMBB-FS: 09/03/2016

Exercice 1: (5.5 pts)

Evaluer les formules suivantes en utilisant les tables de vérités.

1)
$$(P \Rightarrow Q) \lor (Q \Rightarrow P)$$
 2) $(P \Leftrightarrow Q) \land (P \Leftrightarrow \bar{Q})$

2)
$$(P \Leftrightarrow Q) \land (P \Leftrightarrow \bar{Q})$$

II. On considère les ensembles suivants :

$$A = \{1, 2, 5\}$$
, $B = \{\{1, 2\}, 5\}$, $C = \{\{1, 2, 5\}\}$, $D = \{\emptyset, \{1, 2\}, 5\}$

$$\mathbf{\textit{E}} = \{\ 5,\ 1,\ 2\ \}\ ,\ \mathbf{\textit{F}} = \{\ \{1\ ,\ 2\}\ ,\ \{5\}\ \}\ ,\ \mathbf{\textit{G}} = \{\ \{1\ ,\ 2\}\ ,\ \{5\}\ ,\ 5\ \}\ ,\ \mathbf{\textit{H}} = \big\{5\ ,\ \{1\}\ ,\ \{2\}\big\}$$

- 1) Quelles sont les égalités ou inclusions ou appartenance existant entre ces ensembles ? (citer en 5 à 6)
- 2) Donner le cardinal (le nombre d'éléments) de chacun de ces ensembles ?
- 3) Détérminer $A \cap B$, $G \cup H$, E G et C_B^A (le complémentaire de A dans B).
- 4) Détérminer $\mathcal{P}(\mathbf{D})$, l'ensemble des parties de l'ensemble \mathbf{D} .

Exercice 2: (3 pts)

Soit $f: \mathbb{N}^2 \to \mathbb{N}$, l'application définie par f((n,m)) = m.n, $\forall (n,m) \in \mathbb{N}^2$.

- 1) Soit $n \in \mathbb{N}$, donner <u>un</u> antécédent de n par f.
- 2) Déterminer $f^{-1}(\{1\})$, $f^{-1}(\{3\})$ et $f^{-1}(\{6\})$.
- 3) *f* est-elle injective ? *f* est-elle surjective ?

Exercice 3: (3 pts)

I. On définit dans \mathbb{Z} la relation \mathcal{S} par : $a \mathcal{S} b \Leftrightarrow a \leq b+1$

Vérifier que 0 S 1 et 1 S 0. Donner une conclusion directe.

II. Soit \mathcal{R} la relation définie sur \mathbb{Z} par : $a \mathcal{R} b \Leftrightarrow a < b + 1$

Montrer que \mathcal{R} est une relation d'ordre dans \mathbb{Z} .

Exercice 4: (3 pts)

On munit l'ensemble $G = [0, +\infty[$ de la loi de composition interne * définie par :

$$\forall x, y \in G, x * y = \sqrt{x^2 + y^2}.$$

- 1) Montrer que * est commutative , associative , et que 0 est l'élément neutre.
- 2) Qels sont les éléments symétrisables dans G par *?
- 3) Montrer que l'application $\varphi: x \mapsto x^2$ est un homomorphisme du groupe (G, *) vers le groupe $(\mathbb{R}, +)$

Exercice 5: (5.5 pts)

- **I.** Soit $(U_n)_{n\in\mathbb{N}}$ une suite telle que $U_0=4$ et $U_{n+1}=3-\frac{4}{2+U_n}$, $\forall n\in\mathbb{N}$.
 - 1) Montrer que $\forall n \in \mathbb{N}$, $U_n > 2$.
 - 2) Montrer que $(U_n)_{n\in\mathbb{N}}$ est une suite monotone
 - 3) Etudier sa convergence et donner sa limite eventuelle.
- II. Calculer, si elles existent, les limites suivantes :

1)
$$\lim_{n \to +\infty} \sqrt{3n+1} - \sqrt{2n+1}$$

2)
$$\lim_{n\to+\infty} \sin\left(\pi + \frac{\pi}{n}\right)$$

3)
$$\lim_{n \to +\infty} \frac{2n\sqrt{n}+1}{n^2+1}$$

4)
$$\lim_{n\to+\infty} \left(e^{-4n} + \frac{1}{n}\right) \sin n$$

5)
$$\lim_{n\to+\infty} (-1)^n \frac{4n-1}{2n+3}$$

Corrigé de l'EPREUVE de MATHS 1 (SM)

Exercice 1: (5.5 pts)

III. Evaluer les formules suivantes en utilisant les tables de vérités.

1)
$$(P \Rightarrow Q) \lor (Q \Rightarrow P)$$
 2) $(P \Leftrightarrow Q) \land (P \Leftrightarrow \bar{Q})$

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	(1)	$P \Leftrightarrow Q$	$ar{Q}$	$P \Leftrightarrow \bar{Q}$	(2)
1	1	1	1	1	1	0	0	0
1	0	0	1	1	0	1	1	0
0	1	1	0	1	0	0	1	0
0	0	1	1	1	1	1	0	0

Conclusion : quelque soit la valeur de vérité des propositions P et Q, la propriété (1) est vraie contrairement à la propriété (2) qui est fausse.

IV. On considère les ensembles suivants :

$$A = \{1, 2, 5\}$$
, $B = \{\{1, 2\}, 5\}$, $C = \{\{1, 2, 5\}\}$, $D = \{\emptyset, \{1, 2\}, 5\}$
 $E = \{5, 1, 2\}$, $F = \{\{1, 2\}, \{5\}\}$, $G = \{\{1, 2\}, \{5\}, 5\}$, $H = \{5, \{1\}, \{2\}\}$

- 1) Quelles sont les égalités ou inclusions ou appartenances existant entre ces ensembles ?(citer en 5 à 6)
 - On a : A = E, $A \in C$, $B \subset D$, $B \subset G$, $E \in C$ et $F \subset G$.
- 2) Donner le cardinal (le nombre d'éléments) de chacun de ces ensembles?

•
$$Card(\mathbf{A}) = 3$$
, $Card(\mathbf{B}) = 2$, $Card(\mathbf{C}) = 1$, $Card(\mathbf{D}) = 3$, $Card(\mathbf{E}) = 3$, $Card(\mathbf{F}) = 2$, $Card(\mathbf{G}) = 3$, $Card(\mathbf{H}) = 3$.

- 3) Détérminer $A \cap B$, $G \cup H$, E G et C_B^A (le complémentaire de A dans B).
 - $A \cap B = \{5\}$, $G \cup H = \{\{1,2\},\{5\},5,\{1\},\{2\}\}\}$, $E G = \{1,2\}$ et comme $A \not\subset B$ alors on ne peut pas parler de C_B^A , le complémentaire de A dans B.
- 4) Détérminer $\mathcal{P}(\mathbf{D})$, l'ensemble des partis de l'ensemble \mathbf{D} .
 - $\mathcal{P}(\mathbf{D}) = \{ \emptyset, \{\emptyset\}, \{\{1,2\}\}, \{5\}, \{\emptyset, \{1,2\}\}, \{\emptyset, 5\}, \{\{1,2\}, 5\}, \{\emptyset, \{1,2\}, 5\} \} \}$ (Rappelons que $cad(\mathcal{P}(\mathbf{D})) = 2^{card(\mathbf{D})} = 2^3 = 8$).

Exercice 2: (03pts)

Soit l'application $f: \mathbb{N}^2 \to \mathbb{N}$ définie par f((n, m)) = m.n, $\forall (n, m) \in \mathbb{N}^2$

- 1) Soit $n \in \mathbb{N}$, donner <u>un</u> antécédent de n par f.
 - On cherche un couple $(a, b) \in \mathbb{N}^2$ vérifiant l'équation f((a, b)) = n.

On a: $f((a,b)) = n \Leftrightarrow (a.b = n) \Rightarrow (a et b \text{ sont des diviseurs de } n)$. Ainsi, il suffit de prendre, par exemple, a = 1 et b = n alors (1,n) est l'un des antécédents de n.

- 2) Déterminer $f^{-1}(\{1\})$, $f^{-1}(\{3\})$ et $f^{-1}(\{6\})$.
 - $f^{-1}(\{1\}) = \{(n,m) \in \mathbb{N}^2/f(n,m) = 1\} = \{(n,m) \in \mathbb{N}^2/n. m = 1\}$ la condition n.m = 1 implique que n et m sont inversibles, or le seul entier naturel inversible est 1 d'où n = m = 1 et par suite $f^{-1}(\{1\}) = \{(1,1)\}$.
 - $f^{-1}(\{3\}) = \{(n, m) \in \mathbb{N}^2 / f(n, m) = 3\} = \{(n, m) \in \mathbb{N}^2 / n. m = 3\}$ la condition n. m = 3 implique que n et m divisent 3, qui et premier, alors $n, m \in \{1, 3\}$. Il en découle que $f^{-1}(\{3\}) = \{(1, 3), (3, 1)\}$.
 - $f^{-1}(\{6\}) = \{(n,m) \in \mathbb{N}^2 / f(n,m) = 6\} = \{(n,m) \in \mathbb{N}^2 / n.m = 6\}$ $(n.m = 6) \Rightarrow (n \ et \ m \ divisent \ 6) \Rightarrow n,m \in \{1,2,3,6\}, \text{ on obtient ainsi}$ $f^{-1}(\{6\}) = \{(1,6),(2,3),(3,2),(6,1)\}$
- 3) *f* est-elle injective ? *f* est-elle surjective ?
 - d'après ci-dessus :

f n'est pas injective puisque 3 admet deux antécédents différents (1,3) et (3,1).

f est surjective puisque chaque $n \in \mathbb{N}$ admet au moins un antécédent (1, n).

Exercice 3: (03 pts)

- I. On définit dans \mathbb{Z} la relation \mathcal{S} par : $a \mathcal{S} b \Leftrightarrow a \leq b+1$ Vérifier que $0 \mathcal{S} 1$ et $1 \mathcal{S} 0$. Donner une conclusion directe.
 - $0 \le 1 + 1 \Rightarrow 0 \ \mathcal{S} \ 1$ et $1 \le 0 + 1 \Rightarrow 1 \ \mathcal{S} \ 0$. On conclut que la relation \mathcal{S} n'est pas antisymétrique
- II. Soit \mathcal{R} la relation définie sur \mathbb{Z} par : $a \mathcal{R} b \Leftrightarrow a < b + 1$

Montrer que \mathcal{R} est une relation d'ordre dans \mathbb{Z} .

- \mathcal{R} est une relation d'ordre $\Leftrightarrow \mathcal{R}$ est réflexive, antisymétrique et transitive.
- \mathcal{R} est réflexive $\Leftrightarrow \forall x \in \mathbb{Z}, x \mathcal{R} x$ $\forall x \in \mathbb{Z}, x < x + 1 \Rightarrow x \mathcal{R} x \Rightarrow \mathcal{R} \text{ est réflexive}$
- \mathcal{R} est antisymétrique $\Leftrightarrow \forall x , y \in \mathbb{Z}$, $x \mathcal{R} y$ et $y \mathcal{R} x \Rightarrow x = y$ $\forall x , y \in \mathbb{Z}$, $(x \mathcal{R} y \text{ et } y \mathcal{R} x) \Leftrightarrow (x < y + 1 \text{ et } y < x + 1)$ $\Rightarrow (x \le y \text{ et } y \le x) \Rightarrow (x = y) \Rightarrow \mathcal{R}$ est antisymétrique
- \mathcal{R} est transitive $\Leftrightarrow \forall x$, y, $z \in \mathbb{Z}$, $x \mathcal{R} y$ et $y \mathcal{R} z \Rightarrow x \mathcal{R} z$ Soient x, y, $z \in \mathbb{Z}$ tels que $x \mathcal{R} y$ et $y \mathcal{R} z \Leftrightarrow x < y + 1$ et $y < z + 1 \Rightarrow x \leq y$ et $y \leq z \Rightarrow x \leq z \Rightarrow x < z + 1 \Rightarrow x \mathcal{R} z \Rightarrow \mathcal{R}$ est transitive. Conclusion: \mathcal{R} est une relation d'ordre.

Exercice 4: (03pts)

On munit l'ensemble $G = [0, +\infty[$ de la loi de composition interne * définie par : $\forall \ x,y \in G \ , x*y = \sqrt{x^2 + y^2} \ .$

- 1) Montrer que \ast est commutative , associative , et que 0 est l'élément neutre.
 - (* est commutative) $\Leftrightarrow \forall x, y \in G$, x * y = y * x $\forall x, y \in G$, $x * y = \sqrt{x^2 + y^2} = \sqrt{y^2 + x^2} = y * x$ (c.q.f.d)
 - (* est associative) $\Leftrightarrow \forall x, y, z \in G$, (x * y) * z = x * (y * z) $\forall x, y, z \in G$,

$$(x * y) * z = \left(\sqrt{x^2 + y^2}\right) * z = \sqrt{\left(\sqrt{x^2 + y^2}\right)^2 + z^2} = \sqrt{x^2 + y^2 + z^2} = (I)$$

$$x * (y * z) = x * \left(\sqrt{y^2 + z^2}\right) = \sqrt{x^2 + \left(\sqrt{y^2 + z^2}\right)^2} = \sqrt{x^2 + y^2 + z^2} = (II)$$

$$(I) = (II) \Rightarrow (* \text{ est associative})$$

• (0 est l'élément neutre pour *) $\Leftrightarrow \forall x \in G, x * 0 = x$.

$$\forall x \in G, \ x * 0 = \sqrt{x^2 + 0^2} = \sqrt{x^2} = |x| = x, car \ x \ge 0.$$

Comme * est commutative , 0 * x = x * 0 = x et finalement 0 est en effet

L'élémént neutre.

2) Soit $x \in G$, supposons que x admette un symétrique y

$$x * y = 0 \Leftrightarrow \sqrt{x^2 + y^2} = 0 \Leftrightarrow x^2 + y^2 = 0 \Leftrightarrow x = y = 0$$

Ce qui prouve que seul 0 est symétrisable par * dans *G*.

- 3) Montrer que l'application $\varphi: x \mapsto x^2$ est un homomorphisme du groupe (G, *) vers le groupe $(\mathbb{R}, +)$.
 - φ est un homomorphisme \Leftrightarrow $(\forall x, y \in G, \varphi(x * y) = \varphi(x) + \varphi(y)).$

Soient $x, y \in G$, on a:

$$\varphi(x * y) = \varphi(\sqrt{x^2 + y^2}) = (\sqrt{x^2 + y^2})^2 = x^2 + y^2 = \varphi(x) + \varphi(y)$$
 (c.q.f.d).

Exercice 5: (5.5 pts)

- I. Soit $(U_n)_{n\in\mathbb{N}}$ une suite telle que $U_0=4$ et $U_{n+1}=3-\frac{4}{2+U_n}$, $\forall n\in\mathbb{N}$.
 - 1) Montrer que $\forall n \in \mathbb{N}$, $U_n > 2$.
 - par reccurence : on a $U_0=4>2$, supposons que $U_n>2$ pour un certain $n\in\mathbb{N}$ et montrons que $U_{n+1}>2$.

$$U_{n+1} > 2 \Leftrightarrow 3 - \frac{4}{2 + U_n} > 2 \Leftrightarrow -\frac{4}{2 + U_n} > -1 \Leftrightarrow \frac{4}{2 + U_n} < 1$$

$$\Leftrightarrow 2 + U_n > 4 \Leftrightarrow U_n > 2$$

Comme $U_n > 2$ par hypothèse de récurrence alors $U_n > 2 \Rightarrow U_{n+1} > 2$.

Conclusion : $\forall n \in \mathbb{N}$, $U_n > 2$

- 2) Montrer que $(U_n)_{n\in\mathbb{N}}$ est une suite monotone.
- Pour tout $n \in \mathbb{N}$, on a $U_{n+1} U_n = 3 \frac{4}{2 + U_n} U_n = \frac{-U_n^2 + U_n + 2}{2 + U_n} = \frac{(2 U_n)(U_n + 1)}{2 + U_n}$

Comme pour tout $n \in \mathbb{N}$, $U_n > 2$, alors $\frac{(U_n+1)}{2+U_n} > 0$ et $(2-U_n) < 0$ donc $U_{n+1}-U_n < 0$ et $(U_n)_{n \in \mathbb{N}}$ est une suite décroissante

- 3) Etudier sa convergence et donner sa limite eventuelle.
- On a montré que la suite $(U_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 2, elle est donc convergente. Notons ℓ sa limite. U_{n+1} tend vers ℓ et $f(U_n)$ tend vers $f(\ell)$.

Donc: $\ell = f(\ell) \Leftrightarrow \ell = 3 - \frac{4}{2+\ell} \Leftrightarrow \ell^2 - \ell - 2 = 0 \Leftrightarrow (\ell-2)(\ell+1) = 0$ $\Rightarrow (\ell = 2 \text{ ou } \ell = -1)$. Comme $U_n > 2$ pour tout $n \in \mathbb{N}$, il faut $\ell \ge 2$; on a donc $\ell \ne -1$ et $\ell = 2$.

II. Calculer, si elles existent, les limites suivantes :

1)
$$\lim_{n \to +\infty} \sqrt{3n+1} - \sqrt{2n+1} = \lim_{n \to +\infty} \left(\sqrt{3n+1} - \sqrt{2n+1}\right) \frac{\sqrt{3n+1} + \sqrt{2n+1}}{\sqrt{3n+1} + \sqrt{2n+1}}$$

$$= \lim_{n \to +\infty} \frac{3n+1 - (2n+1)}{\sqrt{3n+1} + \sqrt{2n+1}} = \lim_{n \to +\infty} \frac{n}{\sqrt{3n+1} + \sqrt{2n+1}}$$

$$= \lim_{n \to +\infty} \frac{n}{n \left(\sqrt{\frac{3n+1}{n^2}} + \sqrt{\frac{2n+1}{n^2}}\right)} = \lim_{n \to +\infty} \frac{1}{\left(\sqrt{\frac{3n+1}{n^2}} + \sqrt{\frac{2n+1}{n^2}}\right)} = +\infty$$

2)
$$\lim_{n\to+\infty} \sin\left(\pi + \frac{\pi}{n}\right) = \sin(\pi) = 0.$$

3)
$$\lim_{n \to +\infty} \frac{2n\sqrt{n}+1}{n^2+1} = \lim_{n \to +\infty} \frac{n^2 \left(2\frac{1}{\sqrt{n}} + \frac{1}{n^2}\right)}{n^2 \left(1 + \frac{1}{n^2}\right)} = 0.$$

4)
$$\lim_{n\to+\infty} \left(e^{-4n} + \frac{1}{n}\right) \sin n$$

Comme on a: $\forall n \in \mathbb{N}, -1 \le \sin n \le 1 \Rightarrow (\sin n)_n$ est une suite bornée Et on a $\lim_{n \to +\infty} \left(e^{-4n} + \frac{1}{n} \right) = 0$ alors $\lim_{n \to +\infty} \left(e^{-4n} + \frac{1}{n} \right) (\sin n) = 0$

Ou par le théorème d'encadrement :

Comme $e^{-4n} + \frac{1}{n} \ge 0$ et $\forall n \in \mathbb{N}, -1 \le \sin n \le 1$ alors $-\left(e^{-4n} + \frac{1}{n}\right) \le \left(e^{-4n} + \frac{1}{n}\right) (\sin n) \le \left(e^{-4n} + \frac{1}{n}\right)$

Et comme $\lim_{n\to +\infty} \left(e^{-4n} + \frac{1}{n}\right) = 0$ alors $\lim_{n\to +\infty} \left(e^{-4n} + \frac{1}{n}\right) \sin n = 0$

5)
$$\lim_{n\to+\infty} (-1)^n \frac{4n-1}{2n+3}$$

• Notons $U_n = (-1)^n \frac{4n-1}{2n+3}$. cette suite ne converge pas puisque la sous-suite (U_{2n})

tend vers 2:
$$(U_{2n} = (-1)^{2n} \frac{8n-1}{4n+3} = \frac{8n-1}{4n+3} \longrightarrow \frac{8}{4} = 2).$$

Tandisque la sous-suite U_{2n+1} tend vers -2 : $(U_{2n+1} = (-1)^{2n+1} \frac{8n+3}{4n+5} = \frac{8n+3}{4n+5} \longrightarrow -\frac{8}{4} = -2$.

Conclusion la suite (U_n) n'a pas de limite et diverge.