
				-Vous avez 9	0mn pour répondre à 20 QCM	1-		
THE REAL PROPERTY.					QUESTIONS			
	Un	patient hy	pertendu co	nsulte son médecin. La ter	nsion systolique mesurée est 21	cm Hg.	4	
	Qu	elle est la	valeur de cel	tte tension exprimée en he	ctopascal?		1	
		A. 2800	(B/280	C. 28 D. 2.	8 E. 0.28		1	
	La	concentra	ation en ca	lcium (M=40 g/mole)	du plasma d'un sujet hyperca	lcémique est de 115 mg/L, quelle est,	en	
	mi	A. 0,93	B. 2,30	les par litre, la calcémie d C 5,75 D.	e ce sujet ? 42,9 E. 115			
						compartiments liquidiens de l'organisme	:	
	Le	s abréviat	ions suivant	es sont couramment utilis	ées pour définir les volumes des	compartiments liquidiens de l'organisme		
	V = volume en eau totale V _{IC} = volume intracellulaire V _P = volume plasmatique							
	V	V _I = volume interstitiel V _{EC} = volume extracellulaire Dans ces conditions quelle est la bonne relation permettant de déterminer le volume interstitiel V _I ?						
	D	ans ces co	nditions que	elle est la bonne relation p	ermettant de determiner le voidi			
		A. V	$_{I}=V_{T}-V_{EC}$					
			$V_{\rm I} = V_{\rm T} - V_{\rm P}$					
		C. V	$I = V_P - V_{E0}$					
		D. V	$V_{\rm I} = V_{\rm IC} - V_{\rm I}$	c				
		(E.) 1	$V_{\rm I} = V_{\rm IC} - V_{\rm I}$ $V_{\rm I} = V_{\rm EC} - V_{\rm IC}$	P				
					II lour coefficient de disso	ciation α, leur Ka ou leur pKa. Parmi les	acide	
Y		On caracté	rise des aci	des de formule générale A	IH par leur coemicient de disse			
		quivants (mel est l'aci	de laible da est id		E. $Ka = 10^{-6}$		
		A C	= 1 B, p	Ka = 4,1	7.20			
					1 (A) at d'ama	solution molaire d'acétate de sodium. Or du mélange ?	veu	
		0 11-	and d'une so	olution molaire d'acide ac	cétique (pKa= 4,64) et d'une	du mélange ?	-	
		On dispo	1 litre de so	lution tampon de pH =4,20	Acétate de sodium	Eau distillée		
	5	preparer	I mue de se	Acide acétique		Qsp 1L		
		199999	1	178 mL	24 mL	Qsp 1L		
100			B	147 mL	53 mL	Qsp 1L		
100			C	102 mL	98 mL	Qsp 1L		
				81 mL	119 mL	Qsp 1L		
2000			D	42 mL	158 mL			
			E					
		Qsp = Q	Quantité suffi	sanc pour	1 / montiones	différentes : la première (A) est un acide	faible	
				d par voie orale contient	deux molécules therapeutiques	différentes : la première (A) est un acide m (pH = 7,5)		
6	No.	Un comp	orime absort	ne (B) est une base faible	de pKa = 9. (pH = 2,5) puis par le duodénu artie diffusible supérieure à sa p	m (pH = 7.5)		
H	6	pKa = 4	et la deuxiei	ic il pesse par l'estomac	(pH = 2,5) puls pai le duodens	portie non diffusible		
t		Lelong	du tube aige	Sill, il passo p	artie diffusible superieure a sur	partie non diffusible		
H		(A1)	Dans I esto	1 samposé Basa D	artie diffusible superious distri	- à ca partie diffusible		
1		(2)	Dans l'esto	Mac . le composé A a s	artie diffusible supérieure à sa partie non diffusible supérieurs partie non diffusible supérieurs parties diffusible me pKa, leurs parties diffusible	re à sa partie diffusible		
ij		(3)	Dans le du	denuiti : le composé B a s	sa partie non diffusible superier	s seraient égales quel que soit le pH		
1		0(4)	Dans le du	denum . le compent le mê	me pKa, leurs parties diffusible	S scraight ag		
ı		5)	Si les comp	oses A et B artale		s seraient égales quel que soit le pH E. Autre réponse	4:66	
				- 112 C 1+3	+4 D. 1+3+5	ter rayon de 100µ. Les coefficients de	uiii	
	1	A.	2+4+5	B. 173	e d'une alvéole pulmonaire ay	$= 1 \cdot 10^{-9} \mathrm{m}^2.\mathrm{s}^{-1}.$	e noi	
	1000年11	Soit un	e molécule	l'oxygene situee au cent	D dans l'air = 1,8. 10 ⁻⁵ m ² .s ⁻¹ , D poumon pour une alvéole comp	dans l'eau = 1. 10 ⁻⁹ m ² .s ⁻¹ . lètement remplie de liquide en supposant du temps mis par une molécule d'O ₂ pour	page	
	7	de l'ox	ygène sont p	ar approximation a 57 C.	poumon pour une alvéole comp	lètement rempire une molécule d'O2 pour	pass	
	1	Chezu	n malade att	eint d'un cedeme aigu du	alvéole l'ordre de grandeur	du temps mis par ans		
	1	départ	de la moléci	ile d'O2 au centre de cette	Illaire est de :	olètement remplie de liquide en supposant du temps mis par une molécule d'O ₂ pour E 0,0001s		
		contro	de l'alvéole	à la membrane alvelo-cap	mane est de.	(E) 0,0001s	No.	
	No.	Condo	. 1s	B. 0,1s C. 0,0	D. 0,0015			
	BARRY.	The Pas	10					

	L'expression de la perméabilité d'une membrane à une substance est : $P = \frac{D_m \lambda}{2}$
	A. P s'exprime en m ² .s ⁻¹
	B λ désigne le gradient de concentration entre les mileux séparés par la membrane
	P's exprime en m.s ⁻¹
	D. D _m est le diamètre des pores de la membrane E. P s'exprime en kg.s ⁻¹
10	Un récipient contenant de l'eau à 27°C est partagé en 2 compartiments par une membrane poreuse de surface 100 cm² ed épaisseur 1 mm. Dans le premier compartiment de volume (11) on met 1 mole de glucose (M=180 g/mole et coefficient de diffusion: 10°4 cm²/s). Dans le second compartiment de volume (21) on place 1 mole d'urée (M=60 g/mole et coefficient de diffusion: 10°5 cm²/s) 1. Le débit initial du glucose est de 10°4 mole/s 2. Le coefficient de perméabilité de l'urée est de 10°4 cm/s 3. La masse d'urée qui traverse la membrane en 30s est de 9 mg 4. La masse de glucose qui traverse la membrane en 30s est de 1 mg 5. Le coefficient de frottement du glucose est supérieur à celui de l'urée A Toutes les réponses 1, 2 et 3 sont exactes B. Seules les réponses 1, 2 et 3 sont exactes C. Seules les réponses 1, 2, 3 et 5 sont exactes E. Autre réponse A l'équilibre on mesurera: 1. Cyll = Cyl2 2. Cyll = C uréel 3. Cyll = 1 mole/l 4. Cyll = 0,5 mole/l 5. Cyll = 0,33 mole/l A. Seules les réponses 1 et 2 sont exactes B. Seules les réponses 1, 2 et 4 sont exactes B. Seules les réponses 1, 2 et 5 sont exactes C. Seules les réponses 1, 2 et 5 sont exactes E. Autre réponse
11	Un sujet atteint de défaillance rénale, et présentant une urémie initiale de 1,2 g/L, est soumis à une séance de péritonéale. Le volume de la cavité péritonéale est 3L. Le volume aqueux du sujet est de 42L. L'urémie en g/L a quinzième dialyse vaut environ B. 0,4 B. 0,6 C. 0.5 D. 0.8 E. 0.2
12	On considère le débit de transfert alvéolo-capillaire de l'oxygène pour toute la surface d'échange pulmonaire A. Il est proportionnel à la différence de pression partielle alvéolo-capillaire de l'oxygène B. Pour un même sujet au repos, il est plus important à 3500 m d'altitude qu'au niveau de la mer Il est diminué en cas d'œdème pulmonaire Il est diminué dans le cas où la surface d'échange est réduite C'est un transfert diffusif
13	Au sujet des compartiments liquidiens de l'organisme Le transfert diffusif de soluté à travers une membrane s'appelle également transfert convectif Le transfert diffusif de soluté à travers une membrane s'appelle également transfert convectif La diffusion d'un soluté est augmentée d'un facteur 3 quand la température est portée de 20°C à 60°C Une hypernatrémie entraine une hypertonicité du milieu extracellulaire Une hypernatrémie varie proportionnellement à la volémie La natrémie varie proportionnellement à la volémie Une hyponatrémie peut être liée soit à une surcharge sodée, soit à un déficit hydrique Une hyponatrémie peut être liée soit à une surcharge sodée, soit à un déficit hydrique

