Université el Hadje Lakhdar-Batna

Faculté de Médecine

Département de pharmacie

Chimie analytique

2eme Année

Groupe:

Cette épreuve comprend 20 questions numérotées de 1à20. Chaque question comporte 5 propositions de réponse A,B,C, D et E dont une est correcte. Pour chacune des questions cochez sur la feuille de réponse la case correspondant à votre choix : (A,B,C,D ou E).

1) Connaissant le pKs = 11,9 du chromate d'argent (Ag₂CrO₄) et en supposant sa basicité négligeable, calculer sa solubilité. (2S) = 453

(A) 6.8×10^{-5} M

B) 0,68x10⁻⁵ M

C) 680x 10⁻⁵ M

D) 6800 x 10⁻⁵ M

E) $0.068 \times 10^{-5} M$

2) La solubilité de l'hydroxyde de magnésium est à 20°C de 8,7 mg. L⁻¹. Calculer la valeur de son Ks. $(M_{Mg} = 24.3 \text{ gr/mol})$

- A) 0,133x10⁻¹¹
- (B) 1.33 x10⁻¹¹
- C) $1,33 \times 10^{-2}$
- D) 1,84::10⁻¹⁰
- E) 1.15×10^{-2}

3) On utilise une solution à 0,01 M de suifate de magnésium, dans laquelle on ajoute progressivement une base concentrée (la dilution est négligeable). Quel est le pH de début de précipitation de l'hydroxyde de magnésium ? (Ks de la Question 2) Ks = Mg - (OH)

A) 4,34

B) 4,43

C) 9,65

(D) 9,56

E) 5,43

) La solubilité de AgCl dans l'eau pure est 1,3x10⁻⁵ M. A un litre de solution saturée en AgCl, on ajoute 0,1 mole de NaCl sans variation de volume. Quelle est la nouvelle concentration en Ag+? K=S'. (S+C)

A) 1,69.10⁻⁹ M

B) 0,13.10⁻⁴ M.

C) 1,30.10⁻⁴ M D) 1,69.10⁻¹⁰ M

E) 1,3,10⁻⁵ M

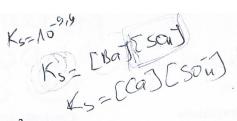
Parmi les propositions suivantes, indiquer quelle(s) est (sont) celle(s) qui sont exactes:

1) La solubilité d'un sel basique augmente en milieu acide

2) La solubilité d'un sel basique diminue en milieu acide

ST - PHI

- 3) La solubilité d'un sel basique augmente avec l'augmentation du pH
- 4) La solubilité est une fonction croissante de h, pour un sel basique
- 5) La solubilité est une fonction croissante de h, pour un sel non basique


A) 3,5

B) 2,3

C) 3,4

D) 1.4

E) 2.4

6) On donne pKs (BaSO₄) = 9.9 et pKs'(CaSO₄) = 4.6

Partant d'une solution initiale [Ba²⁺]_i = [Ca²⁺]_i = 10⁻² M, entre quelles limites doit être comprise [SO₄²] pour que BaSO₄ précipite sans que CaSO₄ précipite. (on négligera toute réaction parasite)

- A) $1,26 \times 10^{-8} \le [SO_4^{2-}] < 2,5 \times 10^{-3} M$
- B) $12,6x10^{-8} \le [SO_4^{2-}] < 0,52x10^{-3}M$
- C) $126 \times 10^{-8} \le [SO_4^{2-}] \le 2.5 \times 10^{-3} M$
- D) $2.5 \times 10^{-8} < [SO_4^{2-}] \le 1.26 \times 10^{-3} M$
- E) $1,26x10^{-2} \le [SO_4^2] \le 2,5x10^{-3} M$

GOH2

K= [Co][OF]

7) Une solution contenant des ions cobalt (II) à la concentration $C_0 = 10^{-2}$ M. Quelle est la valeur de pH pour que 99 % du cobalt précipite sous forme d'hydroxyde de cobalt. Ks $(Co(OH)_2) = 10^{-14,8}$

- A) 5,4
- B) 4,5
- C) 6.8
- (D) 8.6

E) 5.8

8) On place un barreau de zinc dans une solution de nitrate de plomb (0,1 M) à 25°C. Après quelques instants, un dépôt sombre se forme à la surface du zinc ($E^{\circ}_{(Zn2+/Zn)} = -0.76 \text{ V}$; $E^{\circ}_{(Pb2+/Pb)} = -0.13 \text{ V}$). Calculer la constante d'équilibre de la réaction redox?

- A) 10⁻²¹
- B) $10^{10,5}$
- $(C)10^{21}$
- D) 10^{-10,5}

9) L'état d'oxydation du carbone C dans:

- B) + II.
- (C) + III

10) Quel est le potentiel d'une électrode d'argent plongeant dans une solution saturée en Ag⁺et du chlorure de potassium KCl à la concentration 1M. On donne $Ks_{(AgCl)}=1,75.10^{-10}$; $E^{\circ}_{(Ag+/Ag)}=+0,799 \text{ V}$

- A) 0,211 V
- B) 0,222 V
- (C) 0,214 V
- D) 0,250 V
- E) 0,261 V

11) Parmi les propositions suivantes, indiquer quelle(s) est (sont) celle(s) qui sont exactes:

- 1) les éléments ont tendance à céder des électrons sont placés dans la partie droite ou centrale du
- 2) les réducteurs sont placés dans la partie gauche du tableau périodique.
- 3) les atomes ont tendance à capter des électrons se situent dans la partie gauche du tableau
- 4) les éléments ont tendance à gagner des électrons se situent dans la partie droite du tableau
- 5) les oxydants sont placés dans la partie centrale du tableau périodique.
- A) 1,3

- D) 1,5
- E) 4,5

12) L'électrode de référence doit répondre aux critères suivants :									
	 facile à cons inerte irréversible se comporter 	truire de manière parfaite	ment reproductible	e (challeup asujubni	1,09487 M B) 0,022 (0 miles) miles entre e				
C	2,4	B) 1, 3	C) 3,4	D) 2,3	© 1,2				
13) Quelle est la f.e.m de la pile: Li/ Li ⁺ (0,1 mol. L ⁻¹) // F ⁻ (0,01 mol. L ⁻¹), F ₂ (10 ⁵ Pa)/Pt. Données : E°(F ₂ /F ⁻) = 2,87 V ; E°(Li ⁺ /Li)= -3,05 V.									
A	A) 5,86 V	B) 6,25 V	© 6,10 V	D) -0,12 V	E) 0,12 V				
14) Déterminer la constante d'équilibre de la transformation chimique pour la pile :									
14) Déterminer la constante d'équilibre de la transformation chimique pour la pile : Pt/ Fe ³⁺ (0,1 mol. L ⁻¹), Fe ²⁺ (0,1 mol. L ⁻¹)//Ag ⁺ (0,01 mol. L ⁻¹)//Ag									
Données : $E^{\circ}(Ag^{+}/Ag) = 0.80 \text{ V}$; $E^{\circ}(Fe^{3+}/Fe^{2+}) = 0.77 \text{ V}$									
A	.) 0,135	B) 3,16	C) 1,35	D) 0,15	(E) 0,316				
15) On donne: (I ₂ /I') E° ₁ = 0,56 V; (IO ₃ ⁻ /I ₂) E° ₂ =1,21 V; (IO ₃ ⁻ /I') E° ₃ =? L'expression de potentiel standard apparent du couple (IO ₃ ⁻ /I ₂) est: A) E°' ₂ = 1,21-0,06 pH B) E°' ₂ = 1,21+0,072 pH C) E°' ₂ = 1,21-0,072 pH E) E°' ₂ = 1,21-0,012 pH 16) Déterminer la valeur du potentiel standard E° ₃									
	1,10 V	B) 0,91 V	C) 1,32 V	D) 1,5 V	E) 1,20 V				
17) Pa	armi les proposit								
 Parmi les propositions suivantes, indiquer quelle(s) est (sont) celle(s) qui sont exactes: la dismutation est une réaction où deux éléments sont à la fois oxydés et réduite. la dismutation correspond à la transformation d'une espèce de degré d'oxydation donne en deux espèces de degrés d'oxydation plus et moins grands. la dismutation est une réaction d'oxydoréduction dans laquelle une espèce chimique joue à la fois le rôle d'oxydant et de réducteur. la rétrodismutation est la réaction inverse de l'amphotérisation. la rétrodismutation est une réaction où un même élément est à la fois oxydé et réduit. 									
A)		B) 2, 3	C) 3,4	D) 4,5	E) 1,5				

A) 0,09487 M	B) 0,02210 M	C) 0,02154 M	D) 0,01518 M	E) 0,01841 M
19) Parmi les propos	itions suivantes, indiqu	uer quelle(s) est (sont)) celle(s) qui sont exa	actes:
- dans une pile :			purfaitement suproc	astrona oh unnogasoo oh
	thode l'électrode vers	laquelle migrent les c	ations.	
2) on appelle l'a	node l'électrode d'où	s'éloignent les anions		
3) le pole (-) con	respond au potentiel d	'électrode le plus élev	vé.	
4) l'anode est le	pole vers lequel migre	ent les anions.		
A) 3,4	B) 2,4	C) 3,1	D) 4,1	E) 1,2
pH = 1 et son do	ntion d'eau oxygénée, dosés par une solution (de réactif titrant, déter),02 M de KMnO4. Le	e point d'équivalence	étant obtenu par un
A) 4,16.10 ⁻³ M	B) 2,6.10 ⁻² M	C) 8,66.10 ⁻³ M	D) 1,38.10 ⁻³ M	E) 6,23.10 ⁻² M
				Rq 80.0 10.1 1.1
				7 = 1.21=0.072 +g 2 = 1.21 = 0.072 pH
				mq 200,0-15,0 = - 12
			The breshing to	
	10 1,20 V			
		est (sont) celic(s) ev		navius annuessagorg sal u
		sveno eliferili inca e		

18) Le titrage de 0,1467 g de Na₂C₂O₄ étalon primaire a nécessité 28,85 ml d'une solution de

permanganate de potassium. Calculez la concentration molaire en KMnO₄ dans cette solution.

Faculté de médecine Département de Pharmacie 2^{ème} année Pharmacie Date: Avril 2013

Examen No:02 De Chimie Analytique (2heures)

PARTIE TD:

XXXXXXERCICE Nº1: (03 pts)

On considère une pile constituée de deux demi-pile décrites ci-dessous: on se propose de déterminer sa force électromotrice E.

1- La demi-pile 1 est constituée d'un fil d'argent plongeant dans une solution contenant des ions Ag à 2,00 10⁻² mol/l. Exprimer le potentiel E₁ de cette demi-pile en fonction de E°₁ et [Ag⁺]. Calculer E₁.

2-La demi-pile 2 est constituée d'un fil de platine plongeant dans une solution contenant des ions Fe³ et Fe²⁺ chacun à une concentration égale à 2,00 10⁻² mol/l. Le pH de la solution est fixé à 5,0 Grâce à une solution tampon.

On veut calculer les concentrations des ions Fe³⁺ et Fe²⁺ dans la solution de la demi-pile 2. Calculer [OH] dans cette demi-pile.

- Vérifier qu'à pH=5, Fe (OH)₂ ne précipite pas.

- Vérifier qu'à pH=5, Fe (OH)₃ précipite. En déduire [Fe³⁺] dans la demi-pile 2.

- Exprimer et calculer le potentiel E₂ de cette demi-pile. Indiquer les polarités de la pile. Exprimer et calculer la fem E.

<u>Données</u>: Ag⁺/Ag : E°₁= 0,80 V ; Fe³⁺/Fe²⁺ : E°₂= 0,68 V ; produit de solubilité Fe (OH)₃ : $pK_{s1} = 37.5$; Fe (OH)₂ : $pK_{s2} = 15.0$.

XXXXXXERCICE N°2: (03 pts)

On dissout 500 mg d'un échantillon inconnu contenant du carbonate de calcium dans de l'HCl à 2M et on complète à 100 ml avec de l'eau distillée.

On prélève 20 ml de cette solution. On ajoute de l'eau distillée, un volume négligeable de complexe Mg-EDTA (de telle sorte que le nombre de mole de Mg²⁺ et d'EDTA soit inférieur au nombre de mole de Ca²⁺). On tamponne à pH 10 avec du tampon ammoniacal et on ajoute une pastille de noir ériochrome T.

Au point d'équivalence, la chute de burette est de 9,6 ml de solution titrée d'EDTA à 0,12 M. Quel est le pourcentage massique en Ca^{2+} dans l'échantillon (Mr $Ca^{2+} = 40$)?

pKd EDTA-Ca = 10.7pKd EDTA-Mg = 8.7

On symbolisera l'édétate dans l'exercice par EDTA pour les réactions.