Université Frères Mentouri Constantine Faculté des Sciences de la Nature et de la Vie 2eme Année Tronc Commun LMD

TD1: Les solutions Aqueuses (2 Séance)

Exercice 1

Soit la quantité de 0,71g de Na₂SO₄ dans 100g de solution aqueuse.

Comment exprimez-vousles différentes concentrations de cet électrolyte sachant qu'il se dissocie complètement.

On supposera que la densité de la solution est égale à 1.

Exercice 2

Déterminer la fraction molaire, la concentration en mol/l de solution puis en mol/kg desolvant d'une solution aqueuse à 25% en masse d'alcool. (M=46g/mol); d_{alc}= 0,8.

Exercice 3

Un litre de solution contient :

- 10 ml de HCl à 1 mol/l
- 7,50 ml de H_2SO_4 à 2 mol/l
- 5,55g de CaCl₂ (111g/mol)
- 14,4g de glucose (180g/mol)

Les électrolytes étant supposés compléments dissociés,

- calculer l'osmolarité et la concentration équivalente de la solution

Exercices Facultatifs

Exercice 1

Comment procède-t-on pour préparer 1 litre de solution aqueuse de :

- KCl de concentration pondérale 2 g/l.
- CH₃COOH de concentration molaire 0,1 mole/l.

Exercice 2

Le sérum sanguin contient 75g/l de protéines comprenant l'albumine (75000g/mol) et les globulines (15000 g/mol).

Le rapport des concentrations massiques : globuline / albumine étant égal à 1.5.

- Calculer la concentration molaire des protéines (on suppose ces protéines non dissociées).

Exercice 3

Un litre d'une solution renferme :

- 5,85g NaCl (58.5g/mol)
- 3,28g de Na₃PO₄ (164 g/mol)
- 9g de glucose (180 g/mol)
- 0,6gd'urée (60 g/mol)

Calculer la molarité, l'osmolarité et la concentration équivalente de la solution

Exercice 4

Calculer: la molarité, la molalité, l'osmolarité, l'osmolalité et la concentration équivalente d'une solution aqueuse de $HClO_4$ à 60%. d = 1,53 $\alpha = 0,1$

Exercice 5

Complétez le tableau suivant :

	Cp (g/l)	m _r (mole/l)	C _{totdes ions} (mole/l)	$\omega_{\rm r}({\rm osmole/l})$	C _{eq} (eqg/l)
$C_6H_{12}O_6$	60				
NaCl			2		
$CaCl_2, \alpha = 0,9$		0,1			
$Fe(OH)_3, \alpha = 1$			0,6		

On donne: C = 12; H = 1; O = 16; Na = 23; Cl = 35.5; Ca = 40; Fe = 56;

Exercice 6

Soit une solution aqueuse décimolaire de CaCl₂.

- Déterminer son osmolarité sachant que sa concentration équivalente est de 0,24eq.g/l. En déduire sa constante d'équilibre.
- Que devient son osmolarité si l'on dilue 1ml de cette solution dans 99 ml d'eau (on suppose le sel totalement dissocié).

Exercice 7

Pour vérifier le degré de pureté indiqué sur une bouteille d'acide sulfurique (H_2SO_4) impur (densité = 1,84), on mesure le pH = 1 pour une solution aqueuse de cet acide obtenue en mélangeant 4,16 cm³ d'acide prélevé de la bouteille et 295,84 cm³ d'eau distillée.