العلامة		(1310 - 11) 7 1-21
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		الجزء الأول: (13 نقطة)
		التمرين الأول: (06 نقاط)
0,75	0 ,25	$v_B = -3 \text{ m/s}$ السرعة الابتدائية من البيان $v_B = -3 \text{ m/s}$
	0,5	ب)- مسافة الصعود BA: مسافة الصعود هي مساحة الحيز المحصور بمنحنى السرعة
		$BA = \frac{1}{2} \times 1 \times 3 = 1.5m$ ومحور الأزمنة واللحظتين $t = 1s$ ، $t = 0s$
	0,5	2-أ)- نص القانون الثاني لنيوتن: في مرجع عطالي، المجموع الشعاعي للقوى الخارجية
		المطبقة على جملة مادية يساوي الى جداء كتلة الجملة في شعاع تسارع مركز عطالتها.
	0.5	ب)- عبارة التسارع واستنتاج طبيعة الحركة:
	0,5	باعتبار المرجع السطحي الأرضى وبتطبيق القانون الثاني لنيوتن
2,25	0,25	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
	0,25	بما أن المسار مستقيم والجداء $a imes v < 0$ فإن الحركة مستقيمة متباطئة بانتظام.
	0,25	$a = \frac{\Delta v}{\Delta t} = 3 \ m / s^2$:ابیان لدینا: من البیان لدینا دینا: جـساب زاویة المیل: من البیان لدینا
	0,25 0,25	$lpha=17.5^\circ$ ومنه $\sin(lpha)=0.3$ بالتعويض في علاقة التسارع نجد
0.25	0,25	المرعة : من البيان أن الجسم يعود إلى ${ m B}$ بنفس السرعة : من البيان $v_B=3$ m/s عنول إجابات ${ m B}$
0,25		أخرى)
	0.25	\vec{r} القوى: \vec{r} القوى: \vec{r}
	0,25	ب)- شدة قوة الاحتكاك: بتطبيق مبدأ انحفاظ الطاقة
	0,25	$0=rac{1}{2}m.{v_B}^2-f.BC$ بالتعویض $0=E_C(B)+W_f$
	0,5 0,25	$f = \frac{m.v_b^2}{2RC} = 2N$ بالتعویض نجد
2,0		
	•	ج)- حساب المدة الزمنية المستغرقة لقطع المسافة BC :
	0,25	$a_1 = -2.5 m/s^2$ ومنه $-f = m.a_1$ لدينا
	0,25	(الحركة مستقيمة متباطئة بانتظام) $a \times v < 0$ لدينا
	0,25	$t=rac{-v_B}{a_1}=1.2s$ من المعادلة الزمنية للسرعة نجد: $v_C=a_1.t+v_B$ نخلص إلى

العا	(1310 - 11) i 1221 - 120				
مجزأة	عناصر الإجابة (الموضوع الأول)				
0,75	رسم المنحنى البياني: 1.5 - رسم المنحنى البياني: 0				
8x0,25	التعرين الثاني: (07 نقاط) ملاحظة هامة: التعرين الثاني (كيمياء) الموضوع الأول، في حالة عدم انتباه المترشح للمعطيات: - يتم منح علامة المؤال الـ (0,25 نقطة) إلى السؤال الـ (حساب قيمة السرعة) على نفس السؤال في اتعريف السرعة. تعريف السرعة. (1- I CH3-CH2-C O-CH3 CH3-CH2-CH3 Miliوات الإيثيل (O-CH2-CH3) ميثانوات البروبيل (O-CH2-CH3) ميثانوات البروبيل (O-CH2-CH3) ميثانوات البروبيل (O-CH3-CH3-CH3)				
0,5	النفاعل: -2 CH_3-C $CH_3-CH_2-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3$				
0,25	$\lambda_{_{HO^{-}}}>\lambda_{_{CH_{3}COO^{-}}}$ تتناقص الناقلية لأن $^{-1}$ -II				
0,5 0,5 0,5	$G_0 = rac{KC_1V_1}{V_T}(\lambda_{HO^-} + \lambda_{Na^+})$ -(أ-2) $G = rac{KC_1V_1}{V_T}\lambda_{Na^+} + rac{Kx}{V_T}\lambda_{CH_3COO^-} + rac{K(C_1V_1 - x)}{V_T}\lambda_{HO^-}$ λ_{HO^-} - صحة العلاقة: $G = G_0 + rac{Kx}{V_T}(\lambda_{CH_3COO^-} - \lambda_{HO^-})$				
	مجزأة 0,75 8x0,25 0,25 0,5				

الصفحة 2 من 10

العلامة		(131 c. : 11 i de 21
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0,5	(s)
04,0	0,25 0,25 0,25 0,25	$v = \frac{\left(\frac{dG}{dt}\right)_{t=0}}{\frac{k}{V_{T}}(\lambda_{CH_{3}COO^{-}} - \lambda_{HO^{-}})}$: ومنه: $v = \frac{dx}{dt}$: رعة التفاعل: $v = 5,25 \times 10^{-4} \text{mol/s}$: بيانيا: $v = 5,25 \times 10^{-4} \text{mol/s}$: $v = 5,25 \times 10^{-4} \text{mol/s}$: بيانيا:
	0,5	$G(t_{1/2}) = G_0 + rac{K}{V_T} \cdot rac{C_1 V_1}{2} (\lambda_{CH_3COO^-} - \lambda_{HO^-})$: بيان العلاقة: $-(a)$ $2G(t_{1/2}) = 2G_0 + rac{K}{V_T} \cdot C_1 V_1 (\lambda_{CH_3COO^-} - \lambda_{HO^-})$ $G(t_f) = G_0 + rac{KC_1 V_1}{V_T} (\lambda_{CH_3COO^-} - \lambda_{HO^-})$ $G(t_{1/2}) = rac{G_0 + G(\mathbf{t}_f)}{2} \iff 2G(t_{1/2}) = G_0 + G(\mathbf{t}_f)$
	0,5	. ابيانيا : t _{1/2} ≈ 15s
0,5	0,5	الجزء الثاني:(07 نقاط) التمرين التجريبي:(07 نقاط) 1-I-
		$(u_R=0)$ المنحنى البياني الذي يوافق u_{R2} هو المنحنى A عند اللحظة $t=0$ يكون
0,75	0,25 0,25	-2 المعادلة التفاضلية بدلالة شدة التيار -2 $R_{1}i+R_{2}i+ri+L\;di/dt=E$ نجد $u_{R1}+u_{R2}+u_{b}=E$ $(R_{1}+R_{2}+r)i+L\;di/dt=E$,
3,.0	0,25	$(R_1 + R_2 + r)l + L dt / dt = E$, $\frac{di}{dt} + \frac{(R_1 + R_2 + r)}{L}i = \frac{E}{(R_1 + R_2 + r)}$ نخلص إلى

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عاصر الإجاب (الموضوع الأول)
	0,25	E = 6 V E قيمة $-(1-3)$
	0,25 0,25 0,25	$i_0 = \frac{u_{R_2}}{R_2} = \frac{4}{80} = 0.05~A$ ولدينا $u_{\max} = (r + R_2).i_0$ نجد $r = \frac{u_{\max}}{i_0} - R_2 = 12~\Omega$ نجد
	0,5	$R_1=28~\Omega$ نجد $E=(r+R_2+R_1).i_0$: R_1
03,25	0,5	
	1,25	$L= au(R_1+R_2+r)=0.72H$ نجد $ au=0.006s$ نجد $t=0.006s$ نجد $t=0.006s$ نجد $t=0.006s$ خود $t=0.006s$ نجد $t=0.006s$ نجد $t=0.006s$ خود $t=0.006s$ خود $t=0.006s$ خود $t=0.006s$ خود
		$L = 0,72H$ من البيان $L = 0,72H$ ومنه $(\frac{du_{R_2}}{dt})_{t=0} = \frac{2}{3} \times 10^3 V \ / \ s$: A من البيان
	0,5	II − 1) - التحقق التجريبي: توصيل طرفي المكثفة بجهاز الفولط متر ، انحراف المؤشر يدل
0,5	0,5	على أنها مشحونة.
	0.25	2)- نمط الاهتزازات حرة متخامدة لأنها لا تستقبل طاقة من الوسط الخارجي وتحتوي الدارة
0,25	0,25	على ناقل أومي .
		$E_T = E_c\left(0\right) = \frac{1}{2} C u_c^2\left(0\right)$: حساب الطاقة الكلية -(3
01,25	0,5	$E_T = E_c(0) = \frac{1}{2}C.u_c^2(0) = 8.5 \times 10^{-4} J : t = 0$ عند
01,23	0,5	$E_T = E_L(T/4) = \frac{1}{2}Li^2(T/4) = 2.58 \times 10^{-4} J$: t= T/4 عند
2)	0,25	ومنه $E_T\left(0 ight) > E_T\left(T/4 ight)$ ومنه في الطاقة (طاقة غير محفوظة ومنه ومنه
0,5	0,5	4)- عند حذف الناقل الأومي يزداد زمن التخامد دون تأثر الدور ، يكون ضياع الطاقة أقل (يقبل التفسير بيانيا)

العلامة		عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	عاصر الإجبه (الموصوع اللاقي)
		الجزء الأول: (13 نقطة)
		التمرين الأول: (06 نقاط)
	0,25	1-أ)- النواة المشعة: كل نواة غير مستقرة تتفكك تلقائيا لتعطي نواة أكثر استقراراً مع اصدار
		اشعاعات.
1,5	0,25	- النظائر: هي مجموعة ذرات لنفس العنصر لها نفس العدد الذري وتختلف في العدد الكتلي.
	0,25	 العائلة المشعة: هي مجموعة الأنوية الابن الناتجة عن تفكك النواة الأب الأصلى
		ب)- القوانين المستعملة: انحفاظ العدد الشحني - انحفاظ العدد الكتلي
	0,5	x=8 $y=6$
	0,25	$lpha,eta^-$:الأنماط
		(1-2) معادلة تفكك رقم (1) للنواة (1) للنواة (1)
	0,25	$^{210}_{83}Bi \longrightarrow ^{210}_{84}Po + ^{0}_{-1}e$
0,75		^{210}Po النواة ^{220}P :
	0,25	${}^{210}_{84}Po \longrightarrow {}^{206}_{82}Pb + {}^{4}_{2}He$
	0,25	$^{206}Pb,^{207}Pb,^{208}Pb$ أخر الأنوية للنظائر المستقرة:
		$t_{1/2} = \frac{\ln 2}{\lambda}$ ونعلم أن: $A = \lambda N$ ونعلم أن: $A = \lambda N$ ونعلم أن: $A = \lambda N$
	0,25	$l_{\frac{1}{2}} - \frac{1}{\lambda} \text{3} A = \lambda I \text{3} \frac{1}{A \left(\frac{210}{Bi}\right)} - 1 \text{3}$
	0,25	$\frac{N(^{210}Po)}{N(^{210}Bi)} = \frac{t_{1/2}(^{210}Po)}{t_{1/2}(^{210}Bi)}$
01,0	0.25	$\overline{N(^{210}Bi)} = \overline{t_{1/2}(^{210}Bi)}$ ومنه نجد:
	0,25 0,25	(212
		$\Leftrightarrow \frac{N(^{210}Po)}{N(^{210}Bi)} = \frac{138,676}{5,013} = 27,66$
	0.25	4-أ)- طاقة الربط للنواة: هي الطاقة التي يقدمها الوسط الخارجي لنواة ساكنة ومعزولة
	0,25 0,25	لتفكيكها إلى نوياتها ساكنة ومعزولة.
	- ,—-	$E_{\ell} = \left \Delta m \right \cdot c^2 = \left[Z m_p + (A - Z) m_n - m \binom{A}{Z} X \right] c^2$
02,0		

العلامة				المان ،	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)			عصصر الإنجابة (المر
				I	ب)- تكملة الجدول:
		¹⁴ C	^{12}C	¹¹ C	النواة
	1,25	102,200	92,153	70,394	$E_{\ell}({}_{z}^{A}X)(MeV)$ طاقة الربط
		7,300	7,679	6,399	$rac{E_{\ell}ig(rac{A}{Z}Xig)}{A}ig(MeV/nig)$ طاقة الربط لكل نوية
		$oldsymbol{eta}^-$	///	$oldsymbol{eta}^{\scriptscriptstyle +}$	نمط الإشعاع
					ج)- الترتيب التصاعدي لاستقرار الأنوية:
	0,25		11 C	14 C	تز ايد الاستقرار <u>12</u> ر
					*
0,75	0,25 0,25			-?	تاریخ استشهاد الشهید: -5 $A = A_0 e^{-\lambda t} \iff t = -\frac{t_{1/2}}{\ln 2} \ln \frac{A(t)}{A_0}$ 5700 0 1605
	0,25				$t = -\frac{5700}{\ln 2} \ln \frac{0,1605}{0,1617} = 61,254 ans$ ومنه تاريخ الاستشهاد: 1955
					التمرين الثاني:(07 نقاط)
	0,25	ي:		\overrightarrow{f} :النظام الدائم -	اً) – تمثیل القوی المطبقة علی مرکز عط – بدایة السقوط: \overline{P} – \overline{P} – • • • • • • • • • • • • • • • • • •
	0,25	1		\vec{f} $\vec{\Pi}$ \vec{P}	$\overline{\overline{P}}$
S	0,5		•	$\overrightarrow{\Pi} = -\mu$	$oV\overrightarrow{g}$:ب $-$ العبارة الشعاعية لدافعة أرخميدس

الصفحة 6 من 10

العلامة		عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	ري چي کي د د د د د د د د د د د د د د د د د د
	0,25	ج)- نص القانون الثاني لنيوتن: « في معلم غاليلي، المجموع الشعاعي للقوى
		الخارجية المطبقة على جملة مادية، يساوي في كل لحظة جداء كتلتها في
		شعاع تسارع مركز عطالتها ».
	0,25	$\sum \overline{F_{ext}} = m \cdot \overline{a}_{G}$ العبارة الشعاعية للقوى المطبقة على الجملة { مظلة + علبة }:
	0,25	$\vec{f} + \vec{P} + \vec{\Pi} = m \cdot \vec{a}$
		د)- المعادلة التفاضلية للسرعة:
		بالتفاط العبارة الشعاعية للعوى المطبقة على المحور على
		$-kv^2 + mg - \Pi = m \cdot \frac{dv}{dt} \Leftrightarrow$
03,5	0,5	$-\frac{k}{m}v^2 + \left(g - \frac{\Pi}{m}\right) = \frac{dv}{dt}$
		Z
		هـ)- عبارة السرعة الحدية بv:
	0,25	$-\frac{k}{m}v^{2} + \left(g - \frac{\Pi}{m}\right) = \frac{dv}{dt} = 0 \iff v_{\ell} = \sqrt{\frac{mg - \Pi}{k}}$
	Í	$v_{\ell} = \sqrt{\frac{2,5 \times 9,8 - 3}{1.32}} = 4 m \cdot s^{-1}$
	0,25	1,32
		$v_{\ell} = \sqrt{\frac{mg - \Pi}{k}} \implies k = \frac{mg - \Pi}{v_{\ell}^2}$:وحدة الثابت في الجملة الدولية:
	0,5	$[k] = \frac{[mg - \Pi]}{[v_{\ell}]^{2}} = \frac{[M][L][T]^{-2}}{[L]^{2}[T]^{-2}} = [M][L]^{-1}$
	0,25	$kg.m^{-1}$ إذا وحدة k في الجملة الدولية هي
		$t=0$ عبارة a_0 تسارع مركز عطالة الجملة a_0 مظلة a_0 عند اللحظة:
		ا كن عند اللحظة $t=0$ تكون قوة الاحتكاك معدومة ومنه: $-rac{k}{m}v^2+\left(g-rac{\Pi}{m} ight)=rac{dv}{dt}=a$
	0,25	
0,75	0,25	$a_0 = g - \frac{11}{m}$
	0.5-	Π Ω Ω Ω Ω Ω Ω Ω
	0,25	$a_0 = g - \frac{11}{m} = 9,8 - \frac{3}{2,5} = 8,6 m \cdot s^{-2}$:ق.ع:

العلامة		عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	عدر الإجب (الموطوع اللاي)
	0,5	3-أ)- تعريف السقوط الحر: هو السقوط تحت تأثير الثقل فقط
		ب) – قيمة التسارع:
		$\sum \overrightarrow{F_{ext}} = m \cdot \overrightarrow{a}_G$
	0,25	$\overrightarrow{P} = m \cdot \overrightarrow{a}$
	0,25	$\vec{a} = \vec{g}$
	0,25	$a = g = 9,8 \text{m.s}^{-2}$ ومنه:
		ج)- سرعة العبلة عند وصولها الى سطح الأرض:
	0,5	$v = \sqrt{2gh} = 140m/s = 504km/h$
02,75	0,25	السرعة كبيرة جدا وبالتالي تتلف العلبة ولا يمكن استغلال معلوماتها
02,73	0,25	نستنتج أن المظلة ضرورية للحفاظ على العلبة.
		د)- المنحنيين في حالة السقوط الحر:
	0,25	9,8
	0,25	
		t(s)
		الجزء الثاني:(07 نقاط)
		التمرين التجريبي:(07 نقاط)
0,5	0,25	أولا: $1-$ الحمض: كل فرد كيميائي (شاردة أو جزئ) قادر على فقدان H^+ أثناء تفاعل
		كيميائي.
	0,25	الأساس: كل فرد كيميائي (شاردة أو جزئ) قادر على اكتساب ^+H أثناء تفاعل كيميائي.
		2- التركيز المولي c_0 لحمض كلور الهيدروجين في المحلول التجاري c_0 :
0.75	0,5	$c_0 = 10 \frac{d \cdot P}{M} \iff c_0 = \frac{10 \times 1,068 \times 13,5}{36,5}$
0,75	0,25	$c_0 = 3.95 \ mol \cdot L^{-1}$

العلامة		عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	عاصر الإجبة (الموصوع اللاي)
	0,25	3- البروتوكول التجريبي: $f=rac{c}{c_0}=rac{V}{V_0}\Leftrightarrow V_0=5m$ ومنه الوسائل هي:
0,75	0,25	ماصة عيارية سعتها $5mL$ وحوجلة عيارية $250mL$ ماصة عيارية سعتها $5mL$ وحوجلة عيارية $50mL$ - المواد المستعملة: المحلول التجاري $50mL$ والماء المقطر. $5mL$ من المحلول - خطوات العمل: نأخذ بواسطة ماصة عيارية حجماً $5mL$ من المحلول
	0,25	ونسكبه في حوجلة عيارية سعتها $250m$ بها كمية من الماء المقطر $(\frac{3}{4}V)$ ، ثم نكمل بإضافة الماء المقطر إلى خط العيار وبعد غلق الحوجلة بسدادة نقوم بالرج للحصول على محلول متجانس.
	0,5	4- أ)- رسم الشكل التخطيطي لعملية المعايرة: سحاحة بها محلول هيدروكسيد الصوديوم المحاول هيدروكسيد الصوديوم المحاول حمض كلور الهيدروجين المحاول حمض كلور الهيدروجين المحاول حمض كلور الهيدروجين المحاول عناطيسي المحاول مغناطيسي المحاول معناطيسي المحاول مغناطيسي المحاول مغناطيسي المحاول مغناطيسي المحاول معناطيسي المحاول مغناطيسي المحاول معناطيسي المحاول معناطيسي المحاول معناطيسي المحاول معناطيسي المحاول معناطيسي المحاول معناطيسي المحاول معناطيس المحاول المحاو
03,0	0,5	$H_3O^+(aq)+HO^-(aq)=2H_2O(\ell)$: ب $pH=f(V_B)$: رسم البيان $pH=f(V_B)$
	0,5	$E(V_{BE}=7,9mL,pH_E=7)$: احداثیا نقطة التکافؤ

الصفحة 9 من 10

العلامة		()		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)		
		: S_0 استنتاج التركيز المولي c_A للمحلول c_A وكذلك c_0 المحلول التجاري :		
		$c_A V_A = c_B V_{BE} \Leftrightarrow$		
	0,5	$c_{A} = \frac{c_{B}V_{BE}}{V_{A}} \iff c_{A} = \frac{0,10 \times 7,9}{10} = 0,079 mol/L$		
	0,5	$f = \frac{c_0}{c_A} \iff c_0 = f \cdot c_A = 50 \times 0,079 = 3,95 mol \cdot L^{-1}$		
	0.25	و) المقارنة بين معلومات بطاقة القارورة والنتائج المحسوبة في السؤال 2: متطابقة في		
	0,20	حدود أخطاء التجربة.		
		<u>בונות:</u> בינו לינות לינות הוא היו לינות הוא היו לינות הוא היו לינות היו לינות הוא היו לינות היו		
		1. معادلة تفاعل محلول الصود مع ثلاثي الغليسريد:		
0,75	0,75	$CH_2 - O - CO - C_{17}H_{33}$		
		$CH - O - CO - C_{17}H_{33} + 3(Na^{+} + HO^{-}) = CH_{2}OH - CHOH - CH_{2}OH + 3(Na^{+} + C_{17}H_{33} - COO^{-})$ $CH_{2} - O - CO - C_{17}H_{33}$		
		$CII_2 - CO - CO - C_{17}II_{33}$		
	0,5	2.أ) - تسمى هذه العملية: التصبن		
	0,25	ا النوع العضوى الذي يطفو: الصابون - النوع العضوى الذي يطفو: الصابون		
		ب) أهمية الإسترات في الحياة اليومية:		
1,25	0,5	- صناعة الصابون - الو قو د		
		- الوقود - الملونات والمعطرات المضافة للمواد الغذائية		
		- روائح الفواكه والأزهار والورود		