التحضير الهستواصل لبكالوريا - 2010

الموضـــوع: المـــتتالياات

التمرين 01 :

: كما يلي المجال
$$[0;+\infty[$$
 كما يلي f (I

$$f(x) = e^{-2x+1} + 2$$

- fادرس تغيرات الداله f
- C_f عين المستقيم المقارب ثم أنشى -2
- $U_n = e^{-2n+1} + 2$: ب الله عددية معرفة على متتالية عددية معرفة على متتالية عددية معرفة على الله عددية عددية عددية معرفة على الله عددية عدديق عددية عدديق ع
 - مثل الحدود: U_3, U_2, U_1, U_0 على محور التراتيب (1
 - (U_n) ضع تخمينا حول سلوك المتتالية (2
- (التّغيرات؛ الحد الأعلى؛ الحد الأسفل؛ التباعد و التقارب)
 - نادرس حسابيا تغيرات (U_n) و تباعدها (3)

التمرين 02 :

- $f(x) = \frac{x^2 + 2x + 2}{x + 1}$: ب $[0; +\infty]$ على عددية معرفة على f(x)شكل جدول تغيرات الدالة f
- بین أن $\frac{1}{x} + 1 + \frac{1}{x}$ ثم عین المقارب المائل ، ثم أنشئ -
 - $U_n = \frac{n^2 + 2n + 2}{n+1}$: ب $\mathbb N$ حدية معرفة عدية عددية معرفة (U_n) (2
- مثل الحدود U_3, U_2, U_1, U_0 على حامل محور التراتيب. ب- ضع تخمينا حول سلوك المتتالية (U_n) (التغيرات ؛ الحدود ؛ التباعد أو
 - ج- عين حسابيا تغيرات (U_n) و تقاربها أو تباعدها

التمرين 03 :

$$\left\{egin{aligned} U_0 &= \mathbf{0} \ U_{n+1} &= rac{2}{3} U_n + \mathbf{2} \end{aligned}
ight.$$
 : عددية معرفة ب $\left(U_n
ight)$

- مثل الحدود U_3, U_2, U_1, U_0 على حامل محور الفواصل (1
- (2) ضع تخمينا حول سلوك المتتالية (U_n) (التغيرات ؛ التباعد ؛ الحدود)
 - نهایتها (U_n) اندا کانت (U_n) متقاربهٔ عین نهایتها
 - ادرس تغیرات (U_n) حسابیا (4

التمرين 04 :

$$\left\{egin{aligned} U_1=2\ U_{n+1}=-rac{1}{2}U_n \end{aligned}
ight.$$
 \mathbb{N}^* متثالیة عددیة معرفة علی U_n

- مثل الحدود U_4, U_3, U_2, U_1 على حامل محور الفواصل
 - (U_n) ضع تخمينا حول سلوك المتتالية (2
 - ا إذا كانت (U_n) متقاربة ، عين نهايتها (3
 - ادرس تغیرات (U_n) مابیا (4

التمرين 05 :

$$\left\{egin{aligned} U_1=rac{11}{4} \ U_{n+1}=3U_n-4 \end{aligned}
ight.$$
 متـــــــتالية عـــــدية (U_n)

- $U_n > 2$ برهــن بالـــتراجع أن (1
 - (U_n) استنتج تغیرات (2
- (U_n) هــــل (3) هــــــل (3

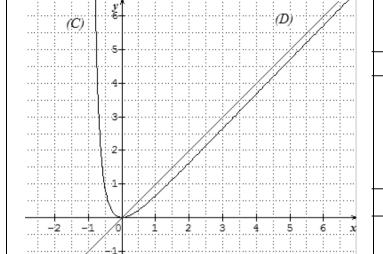
التمرين 06 :

$$\begin{cases} V_0 = \alpha \\ 3V_{n+1} = 2V_n + 6 \end{cases}$$
 : عددیة (V_n)

- عين lpha حتى تكون (V_n) ثابتة .
- $V_n \leq \mathbf{6}$: نفرض $\alpha = \frac{5}{2}$ بر هن بالتراجع أن (2
 - است $\overline{}$ نتج أن (V_n) متزايدة (3
 - بيـــــن أن (V_n) متـــــقاربة . (4)

التمرين 07 :

$$\begin{cases} U_0 = lpha \ U_{n+1} = rac{2U_n+1}{3} \end{cases}$$
 : ندية عصدية (U_n)


- . عين α تكون (U_n) ثابتة α
- $\mathbf{0} \leq U_{\mathrm{n}} < \mathbf{1}$ بفـــرض $\alpha = \mathbf{0}$ برهن بالتراجع أن (2
- اســــتنتج تغيـــرات (U_n) ثم بــين تقاربها (3

التمرين 08 :

$$f(x) = x - \frac{\ln(x+1)}{1+x}$$
: ب $[-1, +\infty]$ دالة عددية معرفة على f

- y=x تمثيلها البياني ، (D) المستقيم ذو المعادلة (C)
 - f شكل جدول تغيرات الدالة
- $f(x)\in [0;4]$ بين أن : إذا كان $x\in [0;4]$ فإن $x\in [0;4]$ بين أن : إذا كان (2
- $\{\stackrel{\circ}{U_{n+1}}=f(U_n):$ المعرفة بالمعرفة (U_n) المعرفة أ
 - ب) أنشئ الحدود U_3 , U_2 , U_1 , U_0 ضع تخمينا
- $U_{\mathrm{n}} \in [0;4]$ برهن بالتراجع أن من أجل $n \in \mathbb{N}$ لدينا (U_n) أدرس رتابة المتتالية

 (U_n) عين نهاية المتتالية (ه

المتمرين 09 :

- : منتالیة عددیة معرفة علی (U_n) با
- $U_n = e^{-\frac{1}{3} + 2n}$ أ- بين أن (U_n) هندسية يطلب أساسها و حدها الأول $S_{\rm n} = U_0 + U_1 + \dots + U_{\rm n}$: ب- نضع n أحسب بدلالة S_n بدلالة
- $S_{\rm n} = rac{e^{-3}}{1-e^2} (1-e^{10})$: عين العدد الطبيعي n بحيث بحيث عين العدد الطبيعي
- $V_n = Ln(U_n)$ ، N من n کل من (2 أ- ما هي طبيعة المتتالية (V_n) ، عين حدها الأول و أساسها . ب- عبر بدلالة n عن المجموع S'_n حيث: $S'_{n} = V_0 + V_1 + \cdots + V_n$ $S'_n = rac{160}{2}$ جـ عين العدد الطبيعي n بحيث يكون

<u>التمرين 10 :</u>

$$\left\{ egin{aligned} U_0 &= 3 \ U_{n+1} &= rac{2}{3}U_n - 1 \end{aligned}
ight.$$
 : دية حيث (U_n)

$$V_n = U_n + 3$$
 : دية بحيث (V_n

PREPARATION CONTINUE BAC 2010

. n بدلالة n بدلالة n بدلالة n بدلالة (2

. $\lim_{n\to+\infty} V_n$ و $\lim_{n\to+\infty} U_n$ فسر النتائج. (3)

 $S_1 = V_0 + V_1 + \dots + V_n :$ (4

 $S_2 = U_0 + U_1 + \dots + U_n$

. n أحسس S_2 ، S_1 بسدلالة

التمرين 11:

: ب الم تتالية
$$(U_n)$$
 المعرفة على $U_0=6$ $U_{n+1}=rac{1}{4}U_n+3$

 U_3 , U_2 , U_1 , U_0) مثل على حامل محور الفواصل الحدود (1 (U_n) ب) ضـــع تخميــنا حول تغيــرات و تـقارب (U_n

 $U_n > 4$ ، $n \in \mathbb{N}$ أ- بـــر هن بالتـــراجع أن مـــن أجل (2

ب- بـــر هن أن المــــتالية (U_n) متــــناقــصة .

ج- استـــنتج أن (U_n) متــــقاربة ثم عين نهـــايتها .

 $W_n = Ln(U_n - 4)$: نعتبر المتتالية (W_n) المعرفة على (3) أ- برهـــن أن (W_n) متـــتالية حـسابية يطلب أساسها . $W_n = (1-2n)Ln2$: ب- تحـــقق أن

د- أحسب أصغر قيمة للعدد الطبيعي n حيث يكون: $U_n < 4 + 2.10^{-4}$

التمرين <u>12 :</u>

متــــتالية هندسية متـــزايدة تـــماما حدها الأول (U_n) u_1 و أساسها u_2 و

$$\begin{cases}
U_1 + 2U_2 + U_3 = 32 \\
U_1 \times U_2 \times U_3 = 216
\end{cases}$$

 U_1 أ- أحسب U_2 و الأساس q لهذه المتتالية و استنتج الحد الأول U_1 u_n بـ اكتـــب عـــبارة الحد العام u_n بـدلالة n ج- أحســب $S_n=U_1+U_2+\cdots+U_n$ بدلالة $S_n=S_n$ $S_n = 728$ ثم عين العدد الطبيعي n بحيث يكون ن منتالية عددية معرفة على \mathbb{N}^* كما يلى : (V_n)

 $V_{n+1} = \frac{3}{2}V_n + U_n$ $V_1 = 2$

 V_3 ا أحسب V_2 و

 $rac{1}{2}$ بين أن (W_n) هندسية أساسها $W_n=rac{V_n}{U_n}-rac{2}{3}$: بين أن . n أكتب W_n بدلالة n ثم استنتج N بدلالة N

التمرين 13 : | BAC 2009 ع.ت

و $U_{n+2}=rac{4}{3}\,U_n-rac{1}{3}\,U_n$ کما یلي $\mathbb N$ کما علی معرفة علی U_n $U_0 = 1$ و $U_1 = 2$

 $V_n = U_{n+1} - U_n$: المنتالية (V_n) معرفة على $\mathbb N$ معرفة على

 V_1 أحسب V_0 و V_1

برهن أن (V_{n}) متتالية هندسية . (2)

 $S_n = V_0 + V_1 + \dots + V_{n-1}$ أ- أحسب بدلالة n المجموع (3 n برهن أنه من أجل كل عدد طبيعي n $U_n = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) + 1$. ج- بین أن (U_n) متقاربة

التمرين 14:

متتالية حسابية حدودها الثلاثة الأولى $U_3 lpha U_2 lpha U_1$ تحقق (U_n) $(U_1 - 3U_2 + U_3 = -1)$ الجمـــلة: $U_1^2 - U_2^2 = -4\sqrt{2}$

> $U_3 \ \mathtt{m} U_2 \ \mathtt{m} U_1 : 1$ احسب کلا من $U_1 \ \mathtt{m} U_2 \ \mathtt{m} U_1$ n بدلالة U_n بدلالة -2

 $S_n = U_1 + U_2 + \dots + U_n$: المجموع ما المجموع -3 ثم أوجد قيمة العدد الطبيعي m حتى يكون :

 $S_m - S_{m-2} = 2 + 21\sqrt{2}$

التمرين 15 :

 $f(x) = \frac{9}{6-x}$: نعتبر الدالة f المعرفة على f(x) = -3 $\{U_{n+1}=f(U_n): \mathbb{N} \text{ يدية معرفة على } (U_n)$ $\frac{9}{6-x} < 3$ أ – بــــر هن أنـــــه إذا كــــان x < 3 فإن x < 3 (1 . n < 3 أستـــنتج أن $u_n < 3$ مــــن أجل كل عدد طبـــيعي (U_n) اندرس اتـــــــجاه تغيـــرات المتـــــتالية

ج- مــــاذا يمــــكننا أن نســـتنتج من "أ" و" ب" $V_n = \frac{1}{U_{n-3}}$: \mathbb{N} is also in \mathbb{N} in \mathbb{N} in \mathbb{N} in \mathbb{N} in \mathbb{N} in \mathbb{N} $r=-rac{1}{2}$ أ. برهــــن أن (V_n) متتـــالية حســابية أساسها n ب. عيــــن V_n ثم U_n بــــدلالة (U_n) ج. أحسب نها المالية المالية ج.

التمرين 16:

نتالية هندسية حدودها موجبة (U_n) (I

 $LnU_2 - LnU_4 = 4$: إذا علمت أن q إذا علمت أن (1

 $LnU_1 + LnU_5 = -12$ عين U_0 اذا علمت أن

 $\lim_{n\to+\infty} U_n$ بدلالة n ثم أحسب U_n بدلالة (3

 $V_n = LnU_n + LnU_{n+1}$: حيث حيث (V_n)(II . بين أن (V_n) حسابية (1)

 $S_2 = V_0 + V_1 + \dots + V_n : n$ أحسب بدلالة (2 $S_2^2 = 2^{30}$ عين العدد الطبيعي n حيث عين العدد

<u> التمرين 17 :</u>

 $(U_0 = 6)$ ، متتالية عددية (U_n) $U_{n+1} = \frac{1}{2}U_n - 1$ $lpha \in \mathbb{R}^*$ حيث $V_n = lpha U_n - 2$: متتالية بحيث (V_n)

عين lpha حتى تكون (V_n) هندسية .

 $U_{
m n} < rac{3}{2}$ بدلالة n ثم عين أصغر قيمة لـ n بحيث $U_{
m n}$

التمرين 18:

 $(U_0 = 1)$: المعرفة بالمتتالية (U_n) المعرفة ب $\left\{ U_{n+1} = \frac{2}{3}U_n + 3 + n \right\}$

> . U_2 ، U_1 أحســـب (1 $V_n = U_n - 3n$: نضـــع (2

أ- بيـــــن أن (V_n) هندـــــسية .

n بدلالة n ثم عــــين $U_{
m n}$ بدلالة N بدلالة N $W_n = U_{n+1} - U_n :$ (3) $|W_n-3| \leq V_n$: أ- بيــــن أن $\lim_{n \to +\infty} \mathbf{W_n}$: ب- استنج

PREPARATION CONTINUE BAC 2010